935 research outputs found

    The faint-galaxy hosts of gamma-ray bursts

    Full text link
    The observed redshifts and magnitudes of the host galaxies of gamma-ray bursts (GRBs) are compared with the predictions of three basic GRB models, in which the comoving rate density of GRBs is (1) proportional to the cosmic star formation rate density, (2) proportional to the total integrated stellar density and (3) constant. All three models make the assumption that at every epoch the probability of a GRB occuring in a galaxy is proportional to that galaxy's broad-band luminosity. No assumption is made that GRBs are standard candles or even that their luminosity function is narrow. All three rate density models are consistent with the observed GRB host galaxies to date, although model (2) is slightly disfavored relative to the others. Models (1) and (3) make very similar predictions for host galaxy magnitude and redshift distributions; these models will be probably not be distinguished without measurements of host-galaxy star-formation rates. The fraction of host galaxies fainter than 28 mag may constrain the faint end of the galaxy luminosity function at high redshift, or, if the fraction is observed to be low, may suggest that the bursters are expelled from low-luminosity hosts. In all models, the probability of finding a z<0.008 GRB among a sample of 11 GRBs is less than 10^(-4), strongly suggesting that GRB 980425, if associated with supernova 1998bw, represents a distinct class of GRBs.Comment: 7 pages, ApJ in press, revised to incorporate yet more new and revised observational result

    A Surprising Lack of LGRB Metallicity Evolution with Redshift

    Full text link
    Recent additions to the population of Long-duration Gamma Ray Burst (LGRB) host galaxies with measured metallicities and host masses allow us to investigate how the distributions of both these properties change with redshift. We form a sample out to z of 2.5 which we show does not have strong redshift dependent populations biases in mass and metallicity measurements. Using this sample, we find a surprising lack of evolution in the LGRB metallicity distribution across different redshifts and in particular the fraction of LGRB hosts with relatively high-metallicity, that is those with 12+log(O/H) > 8.4, remains essentially constant out to z = 2.5. This result is at odds with the evolution in the mass metallicity relation of typical galaxies, which become progressively more metal poor with increasing redshift. By converting the measured LGRB host masses and redshifts to expected metallicities using redshift appropriate mass-metallicity relations, we further find that the increase in LGRB host galaxy mass distribution with redshift seen in the Perley et al. (2016) SHOALS sample is consistent with that needed to preserve a non-evolving LGRB metallicity distribution. However, the estimated LGRB host metallicity distribution is at least a quarter dex higher at all redshifts than the measured metallicity distribution. This corresponds to about a factor of two in raw metallicity and resolves much of the difference between the LGRB host metallicity cutoffs determined by Graham & Fruchter (2017) and Perley et al. (2016). As LGRB hosts do not follow the general mass metallicity relations, there is no substitute for actually measuring their metallicities.Comment: 20 pages, 7 figures, 10 table

    Orbital Variability in the Eclipsing Pulsar Binary PSR B1957+20

    Full text link
    We have conducted timing observations of the eclipsing millisecond binary pulsar PSR~B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly ΔPb/Pb=1.6×10−7\Delta P_b/P_b = 1.6 \times 10^{-7}, changing quadratically with time and displaying an orbital period second derivative P¨b=(1.43±0.08)×10−18 \ddot P_b = (1.43 \pm 0.08) \times 10^{-18}\,s−1^{-1}. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive and increasing rapidly. If, as we suspect, the PSR~B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025 M⊙0.025\,M{_\odot} companion to PSR~B1957+20 is most likely non-degenerate, convective, and magnetically active.Comment: 9 pages, 3 figures, LaTeX, submitted ApJL 13 Dec. 1993, arz-00

    Long γ-ray bursts and core-collapse supernovae have different environments

    Get PDF
    When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration γ-ray burst. One would then expect that these long γ-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the γ-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long γ-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our own Milky Way

    HST archive primer, version 4.1

    Get PDF
    This version of the HST Archive Primer provides the basic information a user needs to know to access the HST archive via StarView the new user interface to the archive. Using StarView, users can search for observations interest, find calibration reference files, and retrieve data from the archive. Both the terminal version of StarView and the X-windows version feature a name resolver which simplifies searches of the HST archive based on target name. In addition, the X-windows version of StarView allows preview of all public HST data; compressed versions of public images are displayed via SAOIMAGE, while spectra are plotted using the public plotting package, XMGR. Finally, the version of StarView described here features screens designed for observers preparing Cycle 5 HST proposals
    • …
    corecore